Skip to content

Praktyczny Przewodnik Wdrożenia - AI Research Oracle Edition 🔮

Wprowadzenie

Ten przewodnik przeprowadzi Cię krok po kroku przez wdrożenie systemu AI Research Oracle - jedynego systemu przewidującego przyszły wpływ publikacji naukowych AI na podstawie early signals i machine learning. Zamiast czekać 3 lata na cytowania, przewidujemy je w 7 dni!

Dlaczego Oracle? Problem z Cytowaniami

  • Fakt: Papers potrzebują 1-3 lat na zdobycie cytowań
  • Problem: Nie można ocenić wartości świeżych publikacji
  • Rozwiązanie: Early signals (Twitter, GitHub, autor) + ML = predykcje od day 1
  • Wartość: Researchers i VCs mogą inwestować czas/pieniądze mądrze

Część 1: Setup Infrastruktury dla Oracle

1.1 Make.com - Konfiguracja dla Early Signals

Praktyczny Przewodnik: Konfiguracja AI Research Oracle w Make.com

🚀 Daily Research Crawler z Early Signals - Krok po Kroku

Ten przewodnik przeprowadzi Cię przez konfigurację systemu, który nie tylko pobiera papers, ale też przewiduje ich przyszły wpływ na podstawie sygnałów z pierwszych 7 dni.

Przygotowanie (45 minut)

1. Załóż potrzebne konta

  • Make.com - https://www.make.com (start od Core plan)
  • Airtable - https://airtable.com (darmowe konto)
  • Twitter Developer - https://developer.twitter.com (Basic tier $100/mo)
  • GitHub - Personal access token (darmowy)
  • Semantic Scholar - API key (darmowy)

2. Przygotuj bazę w Airtable - Oracle Schema

  1. Zaloguj się do Airtable
  2. Kliknij "Create a base" → "Start from scratch"
  3. Nazwij bazę: "AI Research Oracle"
  4. Utwórz tabelę "Papers" z polami:
| Field Name              | Field Type       | Notes                         |
|------------------------|------------------|-------------------------------|
| paper_id               | Autonumber       | Primary key                   |
| title                  | Single line text | Tytuł pracy                   |
| authors                | Long text        | Lista autorów                 |
| abstract               | Long text        | Streszczenie                  |
| arxiv_id               | Single line text | ID z ArXiv                    |
| pdf_url                | URL              | Link do PDF                   |
| submitted_date         | Date             | Data publikacji               |
| early_signals_score    | Number           | Punktacja (0-100)             |
| author_max_h_index     | Number           | Najwyższy h-index             |
| twitter_mentions_24h   | Number           | Mentions w 24h                |
| github_repos_7d        | Number           | Repos w 7 dni                 |
| github_stars_7d        | Number           | Stars w 7 dni                 |
| needs_prediction       | Formula          | {early_signals_score} > 60    |
| predicted_citations_3yr| Number           | Predykcja na 3 lata           |
| prediction_confidence  | Number           | Pewność predykcji (0-1)       |
| prediction_date        | Date             | Kiedy przewidziano            |
  1. Utwórz drugą tabelę "Predictions":
    | Field Name         | Field Type       | Notes                    |
    |-------------------|------------------|--------------------------|
    | prediction_id     | Autonumber       | Primary key              |
    | paper_link        | Link to Papers   | Połączenie z Papers      |
    | predicted_1yr     | Number           | Predykcja 1 rok          |
    | predicted_3yr     | Number           | Predykcja 3 lata         |
    | predicted_5yr     | Number           | Predykcja 5 lat          |
    | confidence        | Number           | Pewność (0-1)            |
    | percentile        | Number           | Przewidywany percentyl   |
    | breakthrough_prob | Number           | Prawdopodobieństwo hitu  |
    | model_version     | Text             | Wersja modelu ML         |
    

Konfiguracja w Make.com - Oracle Pipeline (60 minut)

Scenario 1: Early Signals Collector

Krok 1: Utwórz nowy scenariusz

  1. Zaloguj się do Make.com
  2. "Create a new scenario"
  3. Nazwij: "🔮 Oracle - Early Signals Collector"

Krok 2: ArXiv Crawler (jak wcześniej)

  1. Schedule Trigger (Daily 6:00 UTC)
  2. HTTP Request do ArXiv API
  3. XML Parser
  4. Iterator przez papers

Krok 3: Author Metrics Collector (NOWE!)

  1. Po Iterator dodaj HTTP Request
  2. Nazwa: "Get Author h-index"
  3. Konfiguracja:

    URL: https://api.semanticscholar.org/graph/v1/author/search
    Method: GET
    Query String:
      - query: {{first(split(4.authors; ","))}}
      - fields: authorId,name,hIndex,citationCount
    

  4. Dodaj "Array aggregator" aby zebrać wszystkich autorów

  5. Dodaj "Tools → Basic function":
    // Get max h-index
    {{max(map(5.array; "hIndex"))}}
    

Krok 4: Twitter Buzz Monitor (KLUCZOWE!)

  1. Dodaj HTTP Request
  2. Nazwa: "Check Twitter Mentions"
  3. Konfiguracja:

    URL: https://api.twitter.com/2/tweets/search/recent
    Method: GET
    Headers:
      - Authorization: Bearer {{twitter_bearer_token}}
    Query String:
      - query: {{4.arxiv_id}} OR "{{substring(4.title; 0; 50)}}"
      - max_results: 100
      - tweet.fields: public_metrics,created_at
    

  4. Parse response:

    // Count mentions in last 24h
    const tweets = {{6.data}};
    const last24h = tweets.filter(t => {
      const hours = (Date.now() - new Date(t.created_at)) / (1000*60*60);
      return hours <= 24;
    });
    {{length(last24h)}}
    

Krok 5: GitHub Implementation Tracker

  1. Dodaj HTTP Request
  2. Nazwa: "Search GitHub Repos"
  3. Konfiguracja:
    URL: https://api.github.com/search/repositories
    Method: GET
    Headers:
      - Authorization: token {{github_token}}
      - Accept: application/vnd.github.v3+json
    Query String:
      - q: {{4.arxiv_id}} OR "{{substring(4.title; 0; 30)}}"
      - sort: stars
      - order: desc
    

Krok 6: Calculate Early Signals Score

  1. Dodaj "Tools → Set multiple variables"
  2. Zmienne do ustawienia:
    // Author Score (max 40)
    authorScore: {{min(6.maxHIndex / 2; 15) + (hasTopInstitution ? 10 : 0)}}
    
    // Social Score (max 30)
    twitterScore: {{min(7.mentions24h / 10; 10)}}
    githubScore: {{8.total_count > 0 ? 5 + min(8.items[0].stargazers_count / 10; 5) : 0}}
    
    // Content Score (max 20)
    hasCode: {{contains(4.abstract; "github.com") ? 5 : 0}}
    hasSOTA: {{contains(toLowerCase(4.abstract); "state-of-the-art") ? 7 : 0}}
    
    // Total Score
    totalScore: {{authorScore + twitterScore + githubScore + hasCode + hasSOTA}}
    

Krok 7: Save to Airtable with Signals

  1. Dodaj "Airtable → Create a Record"
  2. Mapuj wszystkie pola włącznie z:
  3. early_signals_score: {{9.totalScore}}
  4. author_max_h_index: {{6.maxHIndex}}
  5. twitter_mentions_24h: {{7.mentions24h}}
  6. github_repos_7d: {{8.total_count}}
  7. needs_prediction: {{9.totalScore > 60}}

Scenario 2: ML Prediction Pipeline (NOWE!)

Krok 1: Weekly Trigger

  1. Nowy scenariusz: "🔮 Oracle - ML Predictions"
  2. Schedule: Every Sunday 10:00 UTC

Krok 2: Get High-Signal Papers

  1. Airtable → Search records
  2. Formula: AND({needs_prediction}, NOT({predicted}))
  3. Max records: 20

Krok 3: Prepare Features for ML

  1. Iterator przez papers
  2. Tools → Set multiple variables
    features: {
      author_h_index: {{3.fields.author_max_h_index}},
      twitter_mentions: {{3.fields.twitter_mentions_24h}},
      has_github: {{3.fields.github_repos_7d > 0}},
      github_stars: {{3.fields.github_stars_7d}},
      abstract_length: {{length(split(3.fields.abstract; " "))}},
      days_since_publish: {{round((now - 3.fields.submitted_date) / 86400000)}}
    }
    

Krok 4: Call ML Prediction API

  1. HTTP Request
    URL: https://your-oracle-api.herokuapp.com/predict
    Method: POST
    Headers:
      - Content-Type: application/json
    Body: {
      "arxiv_id": "{{3.fields.arxiv_id}}",
      "features": {{4.features}},
      "model": "v2.1"
    }
    

Krok 5: Generate Oracle Content

  1. Tools → Text aggregator
  2. Template:
    🔮 Oracle Prediction:
    
    "{{3.fields.title}}"
    
    Predicted impact: {{5.predictions.citations_3yr}} citations by 2028
    Confidence: {{round(5.confidence * 100)}}%
    Percentile: Top {{100 - 5.percentile}}%
    
    Early signals:
    - Author h-index: {{3.fields.author_max_h_index}}
    - Twitter buzz: {{3.fields.twitter_mentions_24h}} mentions
    - GitHub: {{3.fields.github_repos_7d}} implementations
    
    Track this prediction: https://airesearchoracle.com/p/{{3.fields.arxiv_id}}
    

Testowanie Oracle System (30 minut)

Test 1: Early Signals Collection

  1. Uruchom "Early Signals Collector" na 5 papers
  2. Sprawdź w Airtable:
  3. Czy author h-index się zapisał?
  4. Czy Twitter mentions są policzone?
  5. Czy GitHub repos są znalezione?
  6. Czy total score ma sens?

Test 2: Prediction Generation

  1. Ręcznie ustaw needs_prediction = true dla 2 papers
  2. Uruchom "ML Predictions"
  3. Sprawdź czy predykcje się wygenerowały

Test 3: Content Publishing

  1. Weź wygenerowaną predykcję
  2. Opublikuj ręcznie na LinkedIn/Twitter
  3. Zmierz engagement vs zwykły post

ML Model - Quick Start (1 dzień)

Opcja A: Prosty Model w Python

# train_simple_oracle.py
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import joblib

# Zbierz dane historyczne (papers z 2020-2021)
# Możesz użyć Semantic Scholar API do pobrania cytowań

def train_model():
    # Load your data
    df = pd.read_csv('historical_papers.csv')

    # Features
    features = ['author_h_index', 'twitter_mentions_7d', 
                'has_github', 'abstract_length']
    X = df[features]
    y = df['citations_after_3_years']

    # Train
    model = RandomForestRegressor(n_estimators=100)
    model.fit(X, y)

    # Save
    joblib.dump(model, 'oracle_model.pkl')

    return model

Deploy na Heroku/Railway

# app.py - Simple Flask API
from flask import Flask, request, jsonify
import joblib
import numpy as np

app = Flask(__name__)
model = joblib.load('oracle_model.pkl')

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    features = np.array([[
        data['features']['author_h_index'],
        data['features']['twitter_mentions'],
        1 if data['features']['has_github'] else 0,
        data['features']['abstract_length']
    ]])

    prediction = model.predict(features)[0]

    # Calculate percentile (based on your data)
    percentile = calculate_percentile(prediction)

    return jsonify({
        'predictions': {
            'citations_3yr': int(prediction),
            'citations_1yr': int(prediction * 0.3),
            'citations_5yr': int(prediction * 1.8)
        },
        'confidence': 0.75,
        'percentile': percentile
    })

if __name__ == '__main__':
    app.run()

Public Tracker Website (1 dzień)

Simple Next.js/React App

// pages/index.js
import { useEffect, useState } from 'react';

export default function OracleTracker() {
  const [predictions, setPredictions] = useState([]);
  const [stats, setStats] = useState({});

  useEffect(() => {
    // Fetch from Airtable API
    fetchPredictions();
    fetchStats();
  }, []);

  return (
    <div className="oracle-container">
      <h1>🔮 AI Research Oracle - Live Predictions</h1>

      <div className="stats">
        <div className="stat">
          <h3>Predictions Made</h3>
          <p>{stats.total}</p>
        </div>
        <div className="stat">
          <h3>Accuracy Rate</h3>
          <p>{stats.accuracy}%</p>
        </div>
        <div className="stat">
          <h3>Papers Tracked</h3>
          <p>{stats.papers}</p>
        </div>
      </div>

      <h2>Recent Predictions</h2>
      <div className="predictions">
        {predictions.map(p => (
          <PredictionCard key={p.id} prediction={p} />
        ))}
      </div>
    </div>
  );
}

function PredictionCard({ prediction }) {
  const isVerified = prediction.actual_citations !== null;

  return (
    <div className={`card ${isVerified ? 'verified' : 'pending'}`}>
      <h3>{prediction.title}</h3>
      <div className="metrics">
        <span>Predicted: {prediction.predicted_3yr} citations</span>
        {isVerified && <span>Actual: {prediction.actual_citations}</span>}
      </div>
      <div className="confidence">
        Confidence: {(prediction.confidence * 100).toFixed(0)}%
      </div>
      <a href={`/prediction/${prediction.id}`}>View Details </a>
    </div>
  );
}

Content Strategy - Oracle Edition

Week 1: Soft Launch

  1. Monday: "Introducing AI Research Oracle" post
  2. Wednesday: First 5 predictions with explanations
  3. Friday: "How we predict" - methodology post

Week 2: Building Credibility

  1. Daily: 1-2 new predictions
  2. Thread: "Why citation count is outdated"
  3. LinkedIn Article: "The Science of Predicting Science"

Week 3: Viral Push

  1. Challenge: "Beat the Oracle" prediction contest
  2. Controversial: "This paper will fail (and here's why)"
  3. Success: "We predicted this breakthrough 6 months ago"

Monitoring & Optimization

Daily Checks:

  • [ ] API rate limits status
  • [ ] New high-score papers
  • [ ] Prediction accuracy tracking
  • [ ] Social media engagement

Weekly Analysis:

  • [ ] Which signals correlate best?
  • [ ] Model performance metrics
  • [ ] Content engagement rates
  • [ ] Press mentions

Monthly Review:

  • [ ] Retrain model with new data
  • [ ] Accuracy report publication
  • [ ] Strategy adjustment
  • [ ] Partnership discussions

Troubleshooting Oracle Issues

Problem: "Low prediction accuracy"

Solutions: - Add more training data - Engineer better features - Focus on high-confidence predictions only - Be transparent about learning process

Problem: "API rate limits hit"

Solutions: - Implement caching layer - Prioritize high-score papers - Spread requests over time - Use free alternatives (Crossref)

Problem: "No social signals for paper"

Solutions: - Wait 24-48h before scoring - Use alternative signals (downloads) - Lower threshold for author signals - Mark as "insufficient data"

Launch Checklist - Oracle Edition

Technical (Day 1-2):

  • [ ] Early signals scoring live
  • [ ] ML model deployed
  • [ ] Prediction API working
  • [ ] Tracker website up
  • [ ] Make.com scenarios tested

Content (Day 3-5):

  • [ ] 10 predictions ready
  • [ ] Launch announcement drafted
  • [ ] Social media templates
  • [ ] Newsletter setup
  • [ ] Press kit prepared

Marketing (Week 1):

  • [ ] Launch on Product Hunt
  • [ ] Reach out to AI journalists
  • [ ] Post in relevant communities
  • [ ] Contact researchers for feedback
  • [ ] Schedule podcast appearances

Budget Reality Check

Month 1 Costs:

  • Make.com Teams: $29
  • Twitter API: $100
  • ML Hosting: $20
  • Domain/Hosting: $20
  • Total: $169

When to Scale:

  • >100 predictions/week: Upgrade ML infrastructure
  • >1000 followers: Launch premium newsletter
  • >90% accuracy: Start charging for API
  • Press coverage: Raise investment

🎯 Success Metrics - First 30 Days

Technical:

  • 100+ papers analyzed
  • 50+ predictions made
  • 70%+ early signals collected
  • <5% API failures

Growth:

  • 1,000+ tracker visits
  • 500+ newsletter signups
  • 100+ LinkedIn followers
  • 10+ media mentions

Business:

  • 3+ partnership inquiries
  • 1+ speaking invitation
  • 5+ researcher testimonials
  • First revenue discussion

💡 Remember: The magic isn't in perfect predictions - it's in being the ONLY ONE making predictions. Start simple, iterate based on data, and always be transparent about your process. The goal is to become "The Oracle" in 6 months! 🔮