Praktyczny Przewodnik Wdrożenia - AI Research Oracle Edition 🔮
Wprowadzenie
Ten przewodnik przeprowadzi Cię krok po kroku przez wdrożenie systemu AI Research Oracle - jedynego systemu przewidującego przyszły wpływ publikacji naukowych AI na podstawie early signals i machine learning. Zamiast czekać 3 lata na cytowania, przewidujemy je w 7 dni!
Dlaczego Oracle? Problem z Cytowaniami
- Fakt: Papers potrzebują 1-3 lat na zdobycie cytowań
- Problem: Nie można ocenić wartości świeżych publikacji
- Rozwiązanie: Early signals (Twitter, GitHub, autor) + ML = predykcje od day 1
- Wartość: Researchers i VCs mogą inwestować czas/pieniądze mądrze
Część 1: Setup Infrastruktury dla Oracle
1.1 Make.com - Konfiguracja dla Early Signals
Praktyczny Przewodnik: Konfiguracja AI Research Oracle w Make.com
🚀 Daily Research Crawler z Early Signals - Krok po Kroku
Ten przewodnik przeprowadzi Cię przez konfigurację systemu, który nie tylko pobiera papers, ale też przewiduje ich przyszły wpływ na podstawie sygnałów z pierwszych 7 dni.
Przygotowanie (45 minut)
1. Załóż potrzebne konta
- ✅ Make.com - https://www.make.com (start od Core plan)
- ✅ Airtable - https://airtable.com (darmowe konto)
- ✅ Twitter Developer - https://developer.twitter.com (Basic tier $100/mo)
- ✅ GitHub - Personal access token (darmowy)
- ✅ Semantic Scholar - API key (darmowy)
2. Przygotuj bazę w Airtable - Oracle Schema
- Zaloguj się do Airtable
- Kliknij "Create a base" → "Start from scratch"
- Nazwij bazę: "AI Research Oracle"
- Utwórz tabelę "Papers" z polami:
| Field Name | Field Type | Notes |
|------------------------|------------------|-------------------------------|
| paper_id | Autonumber | Primary key |
| title | Single line text | Tytuł pracy |
| authors | Long text | Lista autorów |
| abstract | Long text | Streszczenie |
| arxiv_id | Single line text | ID z ArXiv |
| pdf_url | URL | Link do PDF |
| submitted_date | Date | Data publikacji |
| early_signals_score | Number | Punktacja (0-100) |
| author_max_h_index | Number | Najwyższy h-index |
| twitter_mentions_24h | Number | Mentions w 24h |
| github_repos_7d | Number | Repos w 7 dni |
| github_stars_7d | Number | Stars w 7 dni |
| needs_prediction | Formula | {early_signals_score} > 60 |
| predicted_citations_3yr| Number | Predykcja na 3 lata |
| prediction_confidence | Number | Pewność predykcji (0-1) |
| prediction_date | Date | Kiedy przewidziano |
- Utwórz drugą tabelę "Predictions":
| Field Name | Field Type | Notes | |-------------------|------------------|--------------------------| | prediction_id | Autonumber | Primary key | | paper_link | Link to Papers | Połączenie z Papers | | predicted_1yr | Number | Predykcja 1 rok | | predicted_3yr | Number | Predykcja 3 lata | | predicted_5yr | Number | Predykcja 5 lat | | confidence | Number | Pewność (0-1) | | percentile | Number | Przewidywany percentyl | | breakthrough_prob | Number | Prawdopodobieństwo hitu | | model_version | Text | Wersja modelu ML |
Konfiguracja w Make.com - Oracle Pipeline (60 minut)
Scenario 1: Early Signals Collector
Krok 1: Utwórz nowy scenariusz
- Zaloguj się do Make.com
- "Create a new scenario"
- Nazwij: "🔮 Oracle - Early Signals Collector"
Krok 2: ArXiv Crawler (jak wcześniej)
- Schedule Trigger (Daily 6:00 UTC)
- HTTP Request do ArXiv API
- XML Parser
- Iterator przez papers
Krok 3: Author Metrics Collector (NOWE!)
- Po Iterator dodaj HTTP Request
- Nazwa: "Get Author h-index"
-
Konfiguracja:
-
Dodaj "Array aggregator" aby zebrać wszystkich autorów
- Dodaj "Tools → Basic function":
Krok 4: Twitter Buzz Monitor (KLUCZOWE!)
- Dodaj HTTP Request
- Nazwa: "Check Twitter Mentions"
-
Konfiguracja:
-
Parse response:
Krok 5: GitHub Implementation Tracker
- Dodaj HTTP Request
- Nazwa: "Search GitHub Repos"
- Konfiguracja:
Krok 6: Calculate Early Signals Score
- Dodaj "Tools → Set multiple variables"
- Zmienne do ustawienia:
// Author Score (max 40) authorScore: {{min(6.maxHIndex / 2; 15) + (hasTopInstitution ? 10 : 0)}} // Social Score (max 30) twitterScore: {{min(7.mentions24h / 10; 10)}} githubScore: {{8.total_count > 0 ? 5 + min(8.items[0].stargazers_count / 10; 5) : 0}} // Content Score (max 20) hasCode: {{contains(4.abstract; "github.com") ? 5 : 0}} hasSOTA: {{contains(toLowerCase(4.abstract); "state-of-the-art") ? 7 : 0}} // Total Score totalScore: {{authorScore + twitterScore + githubScore + hasCode + hasSOTA}}
Krok 7: Save to Airtable with Signals
- Dodaj "Airtable → Create a Record"
- Mapuj wszystkie pola włącznie z:
- early_signals_score: {{9.totalScore}}
- author_max_h_index: {{6.maxHIndex}}
- twitter_mentions_24h: {{7.mentions24h}}
- github_repos_7d: {{8.total_count}}
- needs_prediction: {{9.totalScore > 60}}
Scenario 2: ML Prediction Pipeline (NOWE!)
Krok 1: Weekly Trigger
- Nowy scenariusz: "🔮 Oracle - ML Predictions"
- Schedule: Every Sunday 10:00 UTC
Krok 2: Get High-Signal Papers
- Airtable → Search records
- Formula:
AND({needs_prediction}, NOT({predicted}))
- Max records: 20
Krok 3: Prepare Features for ML
- Iterator przez papers
- Tools → Set multiple variables
features: { author_h_index: {{3.fields.author_max_h_index}}, twitter_mentions: {{3.fields.twitter_mentions_24h}}, has_github: {{3.fields.github_repos_7d > 0}}, github_stars: {{3.fields.github_stars_7d}}, abstract_length: {{length(split(3.fields.abstract; " "))}}, days_since_publish: {{round((now - 3.fields.submitted_date) / 86400000)}} }
Krok 4: Call ML Prediction API
- HTTP Request
Krok 5: Generate Oracle Content
- Tools → Text aggregator
- Template:
🔮 Oracle Prediction: "{{3.fields.title}}" Predicted impact: {{5.predictions.citations_3yr}} citations by 2028 Confidence: {{round(5.confidence * 100)}}% Percentile: Top {{100 - 5.percentile}}% Early signals: - Author h-index: {{3.fields.author_max_h_index}} - Twitter buzz: {{3.fields.twitter_mentions_24h}} mentions - GitHub: {{3.fields.github_repos_7d}} implementations Track this prediction: https://airesearchoracle.com/p/{{3.fields.arxiv_id}}
Testowanie Oracle System (30 minut)
Test 1: Early Signals Collection
- Uruchom "Early Signals Collector" na 5 papers
- Sprawdź w Airtable:
- Czy author h-index się zapisał?
- Czy Twitter mentions są policzone?
- Czy GitHub repos są znalezione?
- Czy total score ma sens?
Test 2: Prediction Generation
- Ręcznie ustaw needs_prediction = true dla 2 papers
- Uruchom "ML Predictions"
- Sprawdź czy predykcje się wygenerowały
Test 3: Content Publishing
- Weź wygenerowaną predykcję
- Opublikuj ręcznie na LinkedIn/Twitter
- Zmierz engagement vs zwykły post
ML Model - Quick Start (1 dzień)
Opcja A: Prosty Model w Python
# train_simple_oracle.py
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import joblib
# Zbierz dane historyczne (papers z 2020-2021)
# Możesz użyć Semantic Scholar API do pobrania cytowań
def train_model():
# Load your data
df = pd.read_csv('historical_papers.csv')
# Features
features = ['author_h_index', 'twitter_mentions_7d',
'has_github', 'abstract_length']
X = df[features]
y = df['citations_after_3_years']
# Train
model = RandomForestRegressor(n_estimators=100)
model.fit(X, y)
# Save
joblib.dump(model, 'oracle_model.pkl')
return model
Deploy na Heroku/Railway
# app.py - Simple Flask API
from flask import Flask, request, jsonify
import joblib
import numpy as np
app = Flask(__name__)
model = joblib.load('oracle_model.pkl')
@app.route('/predict', methods=['POST'])
def predict():
data = request.json
features = np.array([[
data['features']['author_h_index'],
data['features']['twitter_mentions'],
1 if data['features']['has_github'] else 0,
data['features']['abstract_length']
]])
prediction = model.predict(features)[0]
# Calculate percentile (based on your data)
percentile = calculate_percentile(prediction)
return jsonify({
'predictions': {
'citations_3yr': int(prediction),
'citations_1yr': int(prediction * 0.3),
'citations_5yr': int(prediction * 1.8)
},
'confidence': 0.75,
'percentile': percentile
})
if __name__ == '__main__':
app.run()
Public Tracker Website (1 dzień)
Simple Next.js/React App
// pages/index.js
import { useEffect, useState } from 'react';
export default function OracleTracker() {
const [predictions, setPredictions] = useState([]);
const [stats, setStats] = useState({});
useEffect(() => {
// Fetch from Airtable API
fetchPredictions();
fetchStats();
}, []);
return (
<div className="oracle-container">
<h1>🔮 AI Research Oracle - Live Predictions</h1>
<div className="stats">
<div className="stat">
<h3>Predictions Made</h3>
<p>{stats.total}</p>
</div>
<div className="stat">
<h3>Accuracy Rate</h3>
<p>{stats.accuracy}%</p>
</div>
<div className="stat">
<h3>Papers Tracked</h3>
<p>{stats.papers}</p>
</div>
</div>
<h2>Recent Predictions</h2>
<div className="predictions">
{predictions.map(p => (
<PredictionCard key={p.id} prediction={p} />
))}
</div>
</div>
);
}
function PredictionCard({ prediction }) {
const isVerified = prediction.actual_citations !== null;
return (
<div className={`card ${isVerified ? 'verified' : 'pending'}`}>
<h3>{prediction.title}</h3>
<div className="metrics">
<span>Predicted: {prediction.predicted_3yr} citations</span>
{isVerified && <span>Actual: {prediction.actual_citations}</span>}
</div>
<div className="confidence">
Confidence: {(prediction.confidence * 100).toFixed(0)}%
</div>
<a href={`/prediction/${prediction.id}`}>View Details →</a>
</div>
);
}
Content Strategy - Oracle Edition
Week 1: Soft Launch
- Monday: "Introducing AI Research Oracle" post
- Wednesday: First 5 predictions with explanations
- Friday: "How we predict" - methodology post
Week 2: Building Credibility
- Daily: 1-2 new predictions
- Thread: "Why citation count is outdated"
- LinkedIn Article: "The Science of Predicting Science"
Week 3: Viral Push
- Challenge: "Beat the Oracle" prediction contest
- Controversial: "This paper will fail (and here's why)"
- Success: "We predicted this breakthrough 6 months ago"
Monitoring & Optimization
Daily Checks:
- [ ] API rate limits status
- [ ] New high-score papers
- [ ] Prediction accuracy tracking
- [ ] Social media engagement
Weekly Analysis:
- [ ] Which signals correlate best?
- [ ] Model performance metrics
- [ ] Content engagement rates
- [ ] Press mentions
Monthly Review:
- [ ] Retrain model with new data
- [ ] Accuracy report publication
- [ ] Strategy adjustment
- [ ] Partnership discussions
Troubleshooting Oracle Issues
Problem: "Low prediction accuracy"
Solutions: - Add more training data - Engineer better features - Focus on high-confidence predictions only - Be transparent about learning process
Problem: "API rate limits hit"
Solutions: - Implement caching layer - Prioritize high-score papers - Spread requests over time - Use free alternatives (Crossref)
Problem: "No social signals for paper"
Solutions: - Wait 24-48h before scoring - Use alternative signals (downloads) - Lower threshold for author signals - Mark as "insufficient data"
Launch Checklist - Oracle Edition
Technical (Day 1-2):
- [ ] Early signals scoring live
- [ ] ML model deployed
- [ ] Prediction API working
- [ ] Tracker website up
- [ ] Make.com scenarios tested
Content (Day 3-5):
- [ ] 10 predictions ready
- [ ] Launch announcement drafted
- [ ] Social media templates
- [ ] Newsletter setup
- [ ] Press kit prepared
Marketing (Week 1):
- [ ] Launch on Product Hunt
- [ ] Reach out to AI journalists
- [ ] Post in relevant communities
- [ ] Contact researchers for feedback
- [ ] Schedule podcast appearances
Budget Reality Check
Month 1 Costs:
- Make.com Teams: $29
- Twitter API: $100
- ML Hosting: $20
- Domain/Hosting: $20
- Total: $169
When to Scale:
- >100 predictions/week: Upgrade ML infrastructure
- >1000 followers: Launch premium newsletter
- >90% accuracy: Start charging for API
- Press coverage: Raise investment
🎯 Success Metrics - First 30 Days
Technical:
- 100+ papers analyzed
- 50+ predictions made
- 70%+ early signals collected
- <5% API failures
Growth:
- 1,000+ tracker visits
- 500+ newsletter signups
- 100+ LinkedIn followers
- 10+ media mentions
Business:
- 3+ partnership inquiries
- 1+ speaking invitation
- 5+ researcher testimonials
- First revenue discussion
💡 Remember: The magic isn't in perfect predictions - it's in being the ONLY ONE making predictions. Start simple, iterate based on data, and always be transparent about your process. The goal is to become "The Oracle" in 6 months! 🔮