Szczegółowy Plan Integracji API dla AI Research Oracle System 🔮
Overview: APIs dla Predykcji Wpływu
Oracle system potrzebuje API do zbierania early signals (pierwsze 7 dni) które pozwolą przewidzieć przyszłe cytowania. Priorytet: szybkie sygnały społeczne i implementation tracking.
1. ArXiv API - Źródło Papers (FOUNDATION)
Konfiguracja w Make.com
Module: HTTP Request
URL: http://export.arxiv.org/api/query
Method: GET
Headers: None required
Rate Limit: 1 request per 3 seconds
Parametry zapytania:
{
"search_query": "cat:cs.AI OR cat:cs.LG OR cat:cs.CL OR cat:cs.CV",
"start": 0,
"max_results": 50,
"sortBy": "submittedDate",
"sortOrder": "descending"
}
Parsowanie XML w Make.com:
- XML Parser Module
- Input: HTTP Response Body
- Root element:
feed
-
Extract:
entry[]
array -
Iterator Module
- Array:
entry[]
-
Map each paper
-
Data Mapping:
2. Semantic Scholar API - Author Metrics (CRITICAL for Early Signals)
Konfiguracja - Author Search
Module: HTTP Request
URL: https://api.semanticscholar.org/graph/v1/author/search
Method: GET
Headers: None (free tier available)
Parametry zapytania:
Mapowanie danych:
// Extract max h-index among all authors
const authors = {{map(entry.author; "name")}};
const hIndexes = [];
for(let author of authors) {
const result = searchAuthor(author);
if(result) hIndexes.push(result.hIndex);
}
const maxHIndex = Math.max(...hIndexes);
3. Twitter API v2 - Social Buzz Tracking (NEW PRIORITY!)
Konfiguracja
Module: HTTP Request
URL: https://api.twitter.com/2/tweets/search/recent
Method: GET
Headers:
Authorization: Bearer {{twitter_bearer_token}}
Search Parameters:
{
"query": `("${arxiv_id}" OR "${paper_title}") -is:retweet`,
"max_results": 100,
"tweet.fields": "public_metrics,author_id,created_at",
"expansions": "author_id"
}
Metrics Extraction:
// Calculate engagement within 24h
const tweets24h = tweets.filter(t =>
(Date.now() - new Date(t.created_at)) < 24*60*60*1000
);
const metrics = {
mentions_24h: tweets24h.length,
total_retweets: sum(tweets24h.map(t => t.public_metrics.retweet_count)),
total_likes: sum(tweets24h.map(t => t.public_metrics.like_count)),
unique_authors: new Set(tweets24h.map(t => t.author_id)).size,
has_influencer: checkInfluencers(tweets24h.map(t => t.author_id))
};
4. GitHub API - Implementation Tracking (HIGH SIGNAL VALUE!)
Search for Implementations
Module: GitHub - Search Repositories
Query: "{paper_title}" OR "{arxiv_id}" language:python created:>{published_date}
Sort: stars
Order: desc
API Configuration:
URL: https://api.github.com/search/repositories
Headers:
Authorization: Bearer {{github_token}}
Accept: application/vnd.github.v3+json
Signal Extraction:
// Check for early implementations
const implementations = searchResults.items.filter(repo => {
const daysSinceCreated = (Date.now() - new Date(repo.created_at)) / (1000*60*60*24);
return daysSinceCreated <= 7;
});
const githubSignal = {
has_implementation: implementations.length > 0,
total_stars_7d: sum(implementations.map(r => r.stargazers_count)),
implementation_count: implementations.length,
fastest_implementation_hours: min(implementations.map(r =>
(new Date(r.created_at) - new Date(paper.published)) / (1000*60*60)
))
};
5. Altmetric API - Academic Buzz (OPTIONAL but VALUABLE)
Konfiguracja
Module: HTTP Request
URL: https://api.altmetric.com/v1/arxiv/{arxiv_id}
Method: GET
Headers:
Authorization: Bearer {{altmetric_key}}
Valuable Metrics:
{
"mendeley_readers_count": 45, // Strong predictor!
"twitter_mentions": 23,
"news_mentions": 2,
"blog_mentions": 5,
"policy_mentions": 1,
"score": 67.5 // Altmetric attention score
}
6. Crossref Event Data - Free Alternative to Altmetric
Configuration
Query for ArXiv paper:
Parse Events:
const events = response.message.events;
const eventCounts = {
twitter: events.filter(e => e.source_id === "twitter").length,
reddit: events.filter(e => e.source_id === "reddit").length,
wikipedia: events.filter(e => e.source_id === "wikipedia").length,
news: events.filter(e => e.source_id === "newsfeed").length
};
7. Reddit API - Academic Community Signals
OAuth Setup
// Get access token
const tokenResponse = await fetch('https://www.reddit.com/api/v1/access_token', {
method: 'POST',
headers: {
'Authorization': 'Basic ' + btoa(client_id + ':' + client_secret),
'Content-Type': 'application/x-www-form-urlencoded'
},
body: 'grant_type=client_credentials'
});
Search r/MachineLearning
URL: https://oauth.reddit.com/r/MachineLearning/search
Headers:
Authorization: Bearer {{reddit_token}}
User-Agent: AIResearchOracle/1.0
Params:
q: {arxiv_id} OR {paper_title}
restrict_sr: true
sort: hot
limit: 25
Signal Extraction:
const redditSignal = {
posts_count: results.length,
total_score: sum(results.map(p => p.score)),
total_comments: sum(results.map(p => p.num_comments)),
has_discussion: results.some(p => p.num_comments > 10),
highest_score: max(results.map(p => p.score))
};
8. Early Signals Aggregation Algorithm
Master Scoring Function
function calculateEarlySignalsScore(paper, signals) {
let score = 0;
// AUTHOR SIGNALS (40 points max)
const authorScore = {
hIndex: Math.min(signals.maxAuthorHIndex / 2, 15),
topInstitution: signals.hasTopInstitution ? 10 : 0,
trackRecord: signals.authorPrevBreakthroughs ? 10 : 0,
industry: signals.hasIndustryAuthor ? 5 : 0
};
score += sum(Object.values(authorScore));
// SOCIAL BUZZ (30 points max)
const socialScore = {
twitterMentions: Math.min(signals.twitter.mentions_24h / 10, 10),
githubStars: signals.github.has_implementation ?
Math.min(signals.github.total_stars_7d / 10, 5) : 0,
redditScore: Math.min(signals.reddit.highest_score / 50, 5),
mendeleyReaders: Math.min(signals.altmetric.mendeley_readers / 20, 5),
newsPickup: signals.altmetric.news_mentions > 0 ? 5 : 0
};
score += sum(Object.values(socialScore));
// CONTENT SIGNALS (20 points max)
const contentScore = {
hasCode: paper.abstract.toLowerCase().includes('github.com') ? 5 : 0,
hasDataset: paper.abstract.toLowerCase().includes('dataset') ? 3 : 0,
claimsSOTA: /state-of-the-art|sota|outperform/i.test(paper.abstract) ? 7 : 0,
novelMethod: /novel|first|new approach|propose/i.test(paper.abstract) ? 5 : 0
};
score += sum(Object.values(contentScore));
// TOPIC MOMENTUM (10 points max)
const topicScore = {
trendingKeywords: calculateKeywordTrend(paper.title) * 5,
emergingField: isEmergingField(paper.categories) ? 5 : 0
};
score += sum(Object.values(topicScore));
return {
total: Math.min(score, 100),
breakdown: {
author: sum(Object.values(authorScore)),
social: sum(Object.values(socialScore)),
content: sum(Object.values(contentScore)),
topic: sum(Object.values(topicScore))
},
signals: signals
};
}
9. ML Prediction API Integration
Custom API Endpoint
URL: https://your-oracle-api.herokuapp.com/predict
Method: POST
Headers:
Content-Type: application/json
X-API-Key: {{oracle_api_key}}
Request Body:
{
"paper": {
"arxiv_id": "2024.12345",
"title": "...",
"abstract": "...",
"authors": [...],
"categories": [...]
},
"early_signals": {
"author_metrics": {...},
"social_metrics": {...},
"content_features": {...}
},
"model_version": "v2.1"
}
Response:
{
"predictions": {
"citations": {
"1_year": 23,
"3_years": 156,
"5_years": 412
},
"impact": {
"percentile": 89,
"category": "high_impact",
"breakthrough_probability": 0.34
},
"confidence": {
"score": 0.82,
"factors": [
"Strong author track record",
"Early GitHub adoption",
"Novel methodology"
]
}
},
"similar_papers": [...],
"recommended_actions": [
"Monitor weekly",
"Flag for VC newsletter"
]
}
10. Airtable Schema - Updated for Oracle
Papers Table - New Fields:
{
// Existing fields...
// Early Signals Fields
"early_signals_score": number(0-100),
"author_max_h_index": number,
"has_top_institution": checkbox,
"has_industry_author": checkbox,
// Social Signals
"twitter_mentions_24h": number,
"twitter_mentions_7d": number,
"github_repos_7d": number,
"github_stars_7d": number,
"reddit_score": number,
"mendeley_readers": number,
// Predictions
"needs_prediction": formula("early_signals_score > 60"),
"predicted": checkbox,
"predicted_citations_1yr": number,
"predicted_citations_3yr": number,
"prediction_confidence": number(0-1),
"breakthrough_probability": number(0-1),
"prediction_date": date,
// Tracking
"actual_citations_1yr": number,
"actual_citations_3yr": number,
"prediction_accuracy": formula,
"checked_date": date
}
Predictions Table (NEW):
{
"prediction_id": autonumber,
"paper_id": link(Papers),
"prediction_date": date,
"model_version": text,
"features_snapshot": long_text(JSON),
"predicted_values": long_text(JSON),
"confidence_score": number,
"public_url": url,
"social_posts": attachments
}
11. Rate Limiting & Optimization
API Limits Management:
const rateLimits = {
arxiv: { requests: 1, per: 3000 }, // 1 per 3s
twitter: { requests: 300, per: 900000 }, // 300 per 15min
github: { requests: 30, per: 60000 }, // 30 per minute
reddit: { requests: 60, per: 60000 }, // 60 per minute
altmetric: { requests: 1000, per: 86400000 } // 1000 per day
};
// Implement exponential backoff
async function rateLimitedRequest(api, requestFn) {
const limiter = rateLimiters[api];
await limiter.removeTokens(1);
try {
return await requestFn();
} catch(error) {
if(error.status === 429) {
await sleep(Math.pow(2, attempt) * 1000);
return rateLimitedRequest(api, requestFn);
}
throw error;
}
}
12. Cost Optimization
Monthly Budget Allocation:
Twitter API Basic: $100 (essential for social signals)
Make.com Teams: $29 (increased operations)
ML Hosting: $20 (Heroku/Railway)
Altmetric: $50 (optional but valuable)
GitHub: $0 (free tier sufficient)
Reddit: $0 (free tier)
ArXiv: $0 (always free)
Semantic Scholar: $0 (free tier)
Total: $199/month (under $200 target)
Operation Optimization:
- Batch Processing: Group papers by publication date
- Conditional APIs: Only call expensive APIs for high-score papers
- Caching: Store author metrics for 30 days
- Smart Scheduling: Spread API calls throughout the day
13. Quick Implementation Priority
Week 1 - Core Early Signals:
- ArXiv crawler ✓
- Author h-index lookup ✓
- Twitter mentions counter ✓
- Basic scoring algorithm ✓
Week 2 - Enhanced Signals:
- GitHub implementation tracker
- Reddit discussion monitor
- Altmetric/Crossref integration
- ML prediction API
Week 3 - Automation:
- Full Make.com pipeline
- Airtable automation
- Content generation
- Public tracker
Remember: The goal is to predict impact, not wait for it. Every API integration should contribute to early signal detection within the first 7 days of publication. 🔮