Growth Automation Master Plan - AI Research Oracle Edition 🔮
Executive Summary
Ten dokument przedstawia zaktualizowaną strategię automatyzacji wzrostu jako AI Research Oracle - system przewidywania wpływu publikacji naukowych AI na podstawie early signals i machine learning. Pivot z oceny wartości na przewidywanie przyszłości.
Spis Treści
- Strategia Biznesowa
- Pipeline 1: AI Research Oracle
- Pipeline 2: Oracle Newsletter
- Pipeline 3: App Growth Engine
- Budżet i ROI
- Harmonogram Wdrożenia
- Case Studies
Strategia Biznesowa
🔮 Nowe Pozycjonowanie: "The AI Research Oracle"
Stara wizja: Kurator najlepszych badań AI
Nowa wizja: System przewidujący które badania AI będą miały największy wpływ
Dlaczego pivot? - Cytowania pojawiają się po 1-3 latach (nie 48h!) - Early signals (Twitter, GitHub, Mendeley) są dostępne od razu - Nikt inny nie robi predykcji = unikalna pozycja - Weryfikowalność = budowanie zaufania
Cele Biznesowe (zaktualizowane)
- Thought Leadership przez unikalną wartość predykcji
- Fejm Generation - "firma która przewiduje przyszłość AI"
- Lead Generation - researchers i VCs potrzebują tego
- Monetization Path - API dla predykcji, premium insights
- Exit Strategy - acquisition target dla research platforms
Model Biznesowy
Free Tier: - Weekly top 5 predictions - Monthly accuracy reports - Public prediction tracker
Premium Tier ($49/month): - Daily predictions - API access - Detailed signal breakdowns - Custom field tracking
Enterprise ($499/month): - White-label reports - Custom ML models - Investment recommendations - Slack/Teams integration
🎯 Pipeline 1: AI Research Oracle
Cel
Zbudowanie systemu który przewiduje impact publikacji naukowych w ciągu 7 dni od publikacji, z 70%+ dokładnością.
Architektura w Make.com
Scenario 1.1: Early Signals Collector (NEW!)
Schedule (Every 6 hours)
↓
ArXiv API → Get new papers
↓
For each paper:
├── Semantic Scholar → Author h-index
├── Twitter API → Mentions in 24h
├── GitHub API → Implementation repos
└── Altmetric → Early readership
↓
Calculate Early Signals Score (0-100)
↓
Airtable (Research_Papers)
Scenario 1.2: ML Prediction Engine (NEW!)
Schedule (Daily at 10:00 UTC)
↓
Get papers with score > 60
↓
Extract features:
- Author metrics
- Social signals
- Content features
↓
ML Prediction API
↓
Generate predictions:
- Citations at 1/3/5 years
- Percentile ranking
- Breakthrough probability
↓
Save predictions
Scenario 1.3: Oracle Content Generator
Schedule (Sunday 10:00)
↓
Get top predictions of the week
↓
Claude API → Generate:
- Prediction rationale
- Impact analysis
- "Why this matters"
↓
DALL-E 3 → Prediction visualization
↓
Prepare multi-channel content
Scenario 1.4: Prediction Tracker & Validator
Schedule (Monthly)
↓
Get predictions > 1 year old
↓
Check actual citations
↓
Calculate accuracy
↓
Generate transparency report
↓
Update ML model training data
Early Signals Score Algorithm (0-100 points)
// Author Signals (40 pts max)
authorScore = {
maxHIndex: min(hIndex/2, 15), // 15 pts max
topInstitution: hasTop20Uni ? 10 : 0, // 10 pts
trackRecord: prevBreakthroughs * 5, // 10 pts max
industryAuthor: hasGoogleEtc ? 5 : 0 // 5 pts
}
// Social Buzz (30 pts max)
socialScore = {
twitterMentions: min(mentions24h/10, 10), // 10 pts max
githubStars: min(stars7d/10, 5), // 5 pts max
redditScore: min(upvotes/50, 5), // 5 pts max
mendeleyReaders: min(readers7d/20, 5), // 5 pts max
newsPickup: hasNewsMention ? 5 : 0 // 5 pts
}
// Content Signals (20 pts max)
contentScore = {
hasCode: mentionsGitHub ? 5 : 0, // 5 pts
hasDataset: mentionsDataset ? 3 : 0, // 3 pts
claimsSOTA: hasSOTAClaim ? 7 : 0, // 7 pts
novelMethod: hasNovelClaim ? 5 : 0 // 5 pts
}
// Topic Momentum (10 pts max)
topicScore = {
trendingField: fieldGrowthRate * 5, // 5 pts max
timelyConcept: matchesTrends ? 5 : 0 // 5 pts
}
Metryki Sukcesu (6 miesięcy) - Oracle Edition
- Prediction Accuracy: 70%+ within 20% margin
- Papers Analyzed: 10,000+
- Public Predictions: 500+
- Newsletter Subscribers: 5,000+
- API Beta Users: 20+
- Media Mentions: 10+ ("The startup predicting AI breakthroughs")
📧 Pipeline 2: Oracle Newsletter System
Positioning: "The Crystal Ball of AI Research"
Content Strategy Shift
Od: "This week in AI research"
Do: "These papers will define AI's future"
Scenario 2.1: Oracle Weekly Newsletter
Weekly Sunday 14:00 UTC
↓
Get top 5 predictions
↓
Get accuracy stats
↓
Generate newsletter:
├── Accuracy update
├── New predictions
├── Success stories
└── Oracle challenge
↓
Send via Beehiiv
Newsletter Sections
- Oracle Accuracy Report - transparentność buduje trust
- This Week's Predictions - top 5 z confidence scores
- Why We Think So - explanation of signals
- Beat the Oracle Challenge - reader predictions
- Track Record - link do public tracker
Monetization Through Newsletter
- Free: Weekly predictions
- Pro ($29/mo): Daily predictions + API
- Teams ($99/mo): Custom predictions for your field
📱 Pipeline 3: Mobile App Growth Automation
(Pozostaje bez zmian - skupiamy się na Oracle najpierw)
🔗 Integracja Między Pipeline'ami
Oracle → Newsletter
Top prediction of the week
↓
Feature in newsletter with rationale
↓
Track which predictions drive signups
↓
Optimize prediction presentation
Newsletter → App
Newsletter reader interested in AI
↓
Offer app for daily AI insights
↓
Convert to app user
↓
Upsell premium features
Oracle → Media
📊 Key Metrics - Oracle Focus
Primary KPIs
- Prediction Accuracy Rate
- Early Signals Collection Rate
- Newsletter → API Conversion
- Media Mention Sentiment
- Community Prediction Participation
ML Model Metrics
- Feature Importance Ranking
- Model Version Performance
- Training Data Quality
- Prediction Confidence Calibration
💰 Budżet i Alokacja Zasobów (Zaktualizowany)
Faza 1 (50$/miesiąc) - Miesiące 1-2
- Make.com Core: $9
- Basic ML hosting: $20
- Domain/hosting: $21
- Total: $50
Faza 2 (150$/miesiąc) - Miesiące 3-4
- Make.com Teams: $29
- Twitter API Basic: $100
- ML API hosting: $21
- Total: $150
Faza 3 (250$/miesiąc) - Miesiące 5-6
- Make.com Teams: $29
- Twitter API Basic: $100
- Altmetric API: $50
- Enhanced ML hosting: $40
- Beehiiv Growth: $31
- Total: $250
ROI Projection (6 months)
- Investment: $1,000
- Newsletter subscribers value (5k × $10): $50,000
- Speaking engagements (4 × $2,500): $10,000
- API early access sales (20 × $99): $1,980
- Total value created: $61,980
- ROI: 6,098% 🚀
🚀 Harmonogram Wdrożenia - Oracle Roadmap
Miesiąc 1: Foundation - Early Signals
Tydzień 1-2:
- ✅ Setup ArXiv crawler
- ✅ Author h-index integration
- ✅ Twitter mentions counter
- ✅ Early Signals Score algorithm
Tydzień 3-4: - ✅ GitHub implementation tracker - ✅ Basic ML model training - ✅ First 10 predictions - ✅ Public tracker website
Miesiąc 2: Prediction Engine
Tydzień 5-6: - ✅ ML model v2 with more features - ✅ Automated prediction pipeline - ✅ Newsletter automation - ✅ "Beat the Oracle" challenge
Tydzień 7-8: - ✅ API beta launch - ✅ Media outreach - ✅ First accuracy report - ✅ Community building
Miesiąc 3-4: Scale & Optimize
- 📈 Improve prediction accuracy
- 🔧 Add more signal sources
- 💡 Launch premium tiers
- 🚀 Partnership discussions
Miesiąc 5-6: Expansion
- 🌍 Cover more research fields
- 💰 Enterprise features
- 🤖 Advanced ML models
- 📊 Investment insights
🛠️ Stack Technologiczny - Oracle Edition
Core Infrastructure
- Automation: Make.com
- Database: Airtable (moving to PostgreSQL)
- ML Hosting: Heroku/Railway → AWS
- Newsletter: Beehiiv
- Analytics: Mixpanel + Custom
Oracle-Specific Tools
- ML Framework: scikit-learn → TensorFlow
- Feature Store: Feast (future)
- Model Tracking: MLflow
- Predictions DB: PostgreSQL
- Public Tracker: Next.js + Vercel
API Integrations (Priority Order)
- ArXiv API - paper source (free)
- Semantic Scholar - author metrics (free)
- Twitter API - social signals ($100/mo)
- GitHub API - implementation signals (free)
- Altmetric - academic buzz ($50/mo optional)
⚠️ Risk Management - Oracle Specific
Technical Risks
- Prediction accuracy low → Start conservative, improve over time
- API costs explode → Implement strict quotas
- ML model drift → Regular retraining schedule
Business Risks
- Someone copies idea → Move fast, build moat with data
- Predictions very wrong → Embrace transparency, learn publicly
- Researchers hostile → Partner with them, not against
Reputation Risks
- "Just hype detection" → Show rigorous methodology
- Cherry-picking wins → Publish ALL predictions
- Gaming the system → Detect and prevent manipulation
📈 Success Metrics - 6 Month Targets
Oracle Performance
- Papers analyzed: 10,000+
- Predictions made: 500+
- Accuracy rate: 70%+
- Model versions shipped: 5+
Business Metrics
- Newsletter subscribers: 5,000
- API beta users: 20
- Media mentions: 10+
- Revenue: $5,000 MRR
Strategic Wins
- Known as "The Oracle": Yes/No
- Researchers using us: 50+
- VCs citing predictions: 5+
- Acquisition interest: 2+ companies
✅ Pre-Launch Checklist - Oracle Edition
Technical Setup
- [ ] Early Signals scoring live
- [ ] ML model trained on historical data
- [ ] Prediction API deployed
- [ ] Public tracker website
- [ ] Accuracy measurement system
Content Ready
- [ ] 20 predictions pre-made
- [ ] Launch blog post
- [ ] Methodology page
- [ ] Press kit
- [ ] Social proof (beta user quotes)
Business Setup
- [ ] Legal review of predictions
- [ ] Pricing strategy finalized
- [ ] Support system ready
- [ ] Feedback loops built
- [ ] Community platform chosen
🎯 Quick Wins - First 48 Hours
- Hour 0-8: Deploy Early Signals Collector
- Hour 8-16: Make first 5 predictions
- Hour 16-24: Launch tracker website
- Hour 24-32: Publish first prediction post
- Hour 32-40: Reach out to AI journalists
- Hour 40-48: Open beta signups
🔮 Long-term Vision (12+ months)
Product Evolution
- Oracle API: Industry standard for impact prediction
- Oracle Certified: Badge for high-impact papers
- Oracle Ventures: Fund that invests based on predictions
- Oracle Academy: Teach impact prediction
Exit Opportunities
- Acquisition targets: Semantic Scholar, Papers with Code, Elsevier
- Strategic value: Research evaluation infrastructure
- Network effects: More predictions → better model → more users
- Moat: Historical prediction accuracy data
Ten plan przekształca nas z "kolejnego AI newsletter" w "The AI Research Oracle" - jedyne źródło przewidujące przyszłość badań AI. Kluczem jest transparentność, ciągłe uczenie się i budowanie społeczności wokół predykcji. 🔮
Motto: "We don't wait for impact. We predict it."