Skip to content

Growth Automation Master Plan - AI Research Oracle Edition 🔮

Executive Summary

Ten dokument przedstawia zaktualizowaną strategię automatyzacji wzrostu jako AI Research Oracle - system przewidywania wpływu publikacji naukowych AI na podstawie early signals i machine learning. Pivot z oceny wartości na przewidywanie przyszłości.

Spis Treści

  1. Strategia Biznesowa
  2. Pipeline 1: AI Research Oracle
  3. Pipeline 2: Oracle Newsletter
  4. Pipeline 3: App Growth Engine
  5. Budżet i ROI
  6. Harmonogram Wdrożenia
  7. Case Studies

Strategia Biznesowa

🔮 Nowe Pozycjonowanie: "The AI Research Oracle"

Stara wizja: Kurator najlepszych badań AI
Nowa wizja: System przewidujący które badania AI będą miały największy wpływ

Dlaczego pivot? - Cytowania pojawiają się po 1-3 latach (nie 48h!) - Early signals (Twitter, GitHub, Mendeley) są dostępne od razu - Nikt inny nie robi predykcji = unikalna pozycja - Weryfikowalność = budowanie zaufania

Cele Biznesowe (zaktualizowane)

  1. Thought Leadership przez unikalną wartość predykcji
  2. Fejm Generation - "firma która przewiduje przyszłość AI"
  3. Lead Generation - researchers i VCs potrzebują tego
  4. Monetization Path - API dla predykcji, premium insights
  5. Exit Strategy - acquisition target dla research platforms

Model Biznesowy

Free Tier: - Weekly top 5 predictions - Monthly accuracy reports - Public prediction tracker

Premium Tier ($49/month): - Daily predictions - API access - Detailed signal breakdowns - Custom field tracking

Enterprise ($499/month): - White-label reports - Custom ML models - Investment recommendations - Slack/Teams integration

🎯 Pipeline 1: AI Research Oracle

Cel

Zbudowanie systemu który przewiduje impact publikacji naukowych w ciągu 7 dni od publikacji, z 70%+ dokładnością.

Architektura w Make.com

Scenario 1.1: Early Signals Collector (NEW!)

Schedule (Every 6 hours)
ArXiv API → Get new papers
For each paper:
  ├── Semantic Scholar → Author h-index
  ├── Twitter API → Mentions in 24h
  ├── GitHub API → Implementation repos
  └── Altmetric → Early readership
Calculate Early Signals Score (0-100)
Airtable (Research_Papers)

Scenario 1.2: ML Prediction Engine (NEW!)

Schedule (Daily at 10:00 UTC)
Get papers with score > 60
Extract features:
  - Author metrics
  - Social signals
  - Content features
ML Prediction API
Generate predictions:
  - Citations at 1/3/5 years
  - Percentile ranking
  - Breakthrough probability
Save predictions

Scenario 1.3: Oracle Content Generator

Schedule (Sunday 10:00)
Get top predictions of the week
Claude API → Generate:
  - Prediction rationale
  - Impact analysis
  - "Why this matters"
DALL-E 3 → Prediction visualization
Prepare multi-channel content

Scenario 1.4: Prediction Tracker & Validator

Schedule (Monthly)
Get predictions > 1 year old
Check actual citations
Calculate accuracy
Generate transparency report
Update ML model training data

Early Signals Score Algorithm (0-100 points)

// Author Signals (40 pts max)
authorScore = {
  maxHIndex: min(hIndex/2, 15),        // 15 pts max
  topInstitution: hasTop20Uni ? 10 : 0, // 10 pts
  trackRecord: prevBreakthroughs * 5,   // 10 pts max  
  industryAuthor: hasGoogleEtc ? 5 : 0  // 5 pts
}

// Social Buzz (30 pts max)
socialScore = {
  twitterMentions: min(mentions24h/10, 10),  // 10 pts max
  githubStars: min(stars7d/10, 5),          // 5 pts max
  redditScore: min(upvotes/50, 5),          // 5 pts max
  mendeleyReaders: min(readers7d/20, 5),    // 5 pts max
  newsPickup: hasNewsMention ? 5 : 0        // 5 pts
}

// Content Signals (20 pts max)
contentScore = {
  hasCode: mentionsGitHub ? 5 : 0,         // 5 pts
  hasDataset: mentionsDataset ? 3 : 0,     // 3 pts
  claimsSOTA: hasSOTAClaim ? 7 : 0,        // 7 pts
  novelMethod: hasNovelClaim ? 5 : 0       // 5 pts
}

// Topic Momentum (10 pts max)
topicScore = {
  trendingField: fieldGrowthRate * 5,      // 5 pts max
  timelyConcept: matchesTrends ? 5 : 0     // 5 pts
}

Metryki Sukcesu (6 miesięcy) - Oracle Edition

  • Prediction Accuracy: 70%+ within 20% margin
  • Papers Analyzed: 10,000+
  • Public Predictions: 500+
  • Newsletter Subscribers: 5,000+
  • API Beta Users: 20+
  • Media Mentions: 10+ ("The startup predicting AI breakthroughs")

📧 Pipeline 2: Oracle Newsletter System

Positioning: "The Crystal Ball of AI Research"

Content Strategy Shift

Od: "This week in AI research"
Do: "These papers will define AI's future"

Scenario 2.1: Oracle Weekly Newsletter

Weekly Sunday 14:00 UTC
Get top 5 predictions
Get accuracy stats
Generate newsletter:
  ├── Accuracy update
  ├── New predictions
  ├── Success stories
  └── Oracle challenge
Send via Beehiiv

Newsletter Sections

  1. Oracle Accuracy Report - transparentność buduje trust
  2. This Week's Predictions - top 5 z confidence scores
  3. Why We Think So - explanation of signals
  4. Beat the Oracle Challenge - reader predictions
  5. Track Record - link do public tracker

Monetization Through Newsletter

  • Free: Weekly predictions
  • Pro ($29/mo): Daily predictions + API
  • Teams ($99/mo): Custom predictions for your field

📱 Pipeline 3: Mobile App Growth Automation

(Pozostaje bez zmian - skupiamy się na Oracle najpierw)

🔗 Integracja Między Pipeline'ami

Oracle → Newsletter

Top prediction of the week
Feature in newsletter with rationale
Track which predictions drive signups
Optimize prediction presentation

Newsletter → App

Newsletter reader interested in AI
Offer app for daily AI insights
Convert to app user
Upsell premium features

Oracle → Media

Bold prediction made
"Startup predicts next GPT" story
Media coverage
Credibility + new users

📊 Key Metrics - Oracle Focus

Primary KPIs

  • Prediction Accuracy Rate
  • Early Signals Collection Rate
  • Newsletter → API Conversion
  • Media Mention Sentiment
  • Community Prediction Participation

ML Model Metrics

  • Feature Importance Ranking
  • Model Version Performance
  • Training Data Quality
  • Prediction Confidence Calibration

💰 Budżet i Alokacja Zasobów (Zaktualizowany)

Faza 1 (50$/miesiąc) - Miesiące 1-2

  • Make.com Core: $9
  • Basic ML hosting: $20
  • Domain/hosting: $21
  • Total: $50

Faza 2 (150$/miesiąc) - Miesiące 3-4

  • Make.com Teams: $29
  • Twitter API Basic: $100
  • ML API hosting: $21
  • Total: $150

Faza 3 (250$/miesiąc) - Miesiące 5-6

  • Make.com Teams: $29
  • Twitter API Basic: $100
  • Altmetric API: $50
  • Enhanced ML hosting: $40
  • Beehiiv Growth: $31
  • Total: $250

ROI Projection (6 months)

  • Investment: $1,000
  • Newsletter subscribers value (5k × $10): $50,000
  • Speaking engagements (4 × $2,500): $10,000
  • API early access sales (20 × $99): $1,980
  • Total value created: $61,980
  • ROI: 6,098% 🚀

🚀 Harmonogram Wdrożenia - Oracle Roadmap

Miesiąc 1: Foundation - Early Signals

Tydzień 1-2: - ✅ Setup ArXiv crawler - ✅ Author h-index integration
- ✅ Twitter mentions counter - ✅ Early Signals Score algorithm

Tydzień 3-4: - ✅ GitHub implementation tracker - ✅ Basic ML model training - ✅ First 10 predictions - ✅ Public tracker website

Miesiąc 2: Prediction Engine

Tydzień 5-6: - ✅ ML model v2 with more features - ✅ Automated prediction pipeline - ✅ Newsletter automation - ✅ "Beat the Oracle" challenge

Tydzień 7-8: - ✅ API beta launch - ✅ Media outreach - ✅ First accuracy report - ✅ Community building

Miesiąc 3-4: Scale & Optimize

  • 📈 Improve prediction accuracy
  • 🔧 Add more signal sources
  • 💡 Launch premium tiers
  • 🚀 Partnership discussions

Miesiąc 5-6: Expansion

  • 🌍 Cover more research fields
  • 💰 Enterprise features
  • 🤖 Advanced ML models
  • 📊 Investment insights

🛠️ Stack Technologiczny - Oracle Edition

Core Infrastructure

  • Automation: Make.com
  • Database: Airtable (moving to PostgreSQL)
  • ML Hosting: Heroku/Railway → AWS
  • Newsletter: Beehiiv
  • Analytics: Mixpanel + Custom

Oracle-Specific Tools

  • ML Framework: scikit-learn → TensorFlow
  • Feature Store: Feast (future)
  • Model Tracking: MLflow
  • Predictions DB: PostgreSQL
  • Public Tracker: Next.js + Vercel

API Integrations (Priority Order)

  1. ArXiv API - paper source (free)
  2. Semantic Scholar - author metrics (free)
  3. Twitter API - social signals ($100/mo)
  4. GitHub API - implementation signals (free)
  5. Altmetric - academic buzz ($50/mo optional)

⚠️ Risk Management - Oracle Specific

Technical Risks

  • Prediction accuracy low → Start conservative, improve over time
  • API costs explode → Implement strict quotas
  • ML model drift → Regular retraining schedule

Business Risks

  • Someone copies idea → Move fast, build moat with data
  • Predictions very wrong → Embrace transparency, learn publicly
  • Researchers hostile → Partner with them, not against

Reputation Risks

  • "Just hype detection" → Show rigorous methodology
  • Cherry-picking wins → Publish ALL predictions
  • Gaming the system → Detect and prevent manipulation

📈 Success Metrics - 6 Month Targets

Oracle Performance

  • Papers analyzed: 10,000+
  • Predictions made: 500+
  • Accuracy rate: 70%+
  • Model versions shipped: 5+

Business Metrics

  • Newsletter subscribers: 5,000
  • API beta users: 20
  • Media mentions: 10+
  • Revenue: $5,000 MRR

Strategic Wins

  • Known as "The Oracle": Yes/No
  • Researchers using us: 50+
  • VCs citing predictions: 5+
  • Acquisition interest: 2+ companies

✅ Pre-Launch Checklist - Oracle Edition

Technical Setup

  • [ ] Early Signals scoring live
  • [ ] ML model trained on historical data
  • [ ] Prediction API deployed
  • [ ] Public tracker website
  • [ ] Accuracy measurement system

Content Ready

  • [ ] 20 predictions pre-made
  • [ ] Launch blog post
  • [ ] Methodology page
  • [ ] Press kit
  • [ ] Social proof (beta user quotes)

Business Setup

  • [ ] Legal review of predictions
  • [ ] Pricing strategy finalized
  • [ ] Support system ready
  • [ ] Feedback loops built
  • [ ] Community platform chosen

🎯 Quick Wins - First 48 Hours

  1. Hour 0-8: Deploy Early Signals Collector
  2. Hour 8-16: Make first 5 predictions
  3. Hour 16-24: Launch tracker website
  4. Hour 24-32: Publish first prediction post
  5. Hour 32-40: Reach out to AI journalists
  6. Hour 40-48: Open beta signups

🔮 Long-term Vision (12+ months)

Product Evolution

  • Oracle API: Industry standard for impact prediction
  • Oracle Certified: Badge for high-impact papers
  • Oracle Ventures: Fund that invests based on predictions
  • Oracle Academy: Teach impact prediction

Exit Opportunities

  • Acquisition targets: Semantic Scholar, Papers with Code, Elsevier
  • Strategic value: Research evaluation infrastructure
  • Network effects: More predictions → better model → more users
  • Moat: Historical prediction accuracy data

Ten plan przekształca nas z "kolejnego AI newsletter" w "The AI Research Oracle" - jedyne źródło przewidujące przyszłość badań AI. Kluczem jest transparentność, ciągłe uczenie się i budowanie społeczności wokół predykcji. 🔮

Motto: "We don't wait for impact. We predict it."